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Abstract: The ratio of the present price of an index to its earnings 

is known as its price to earnings ratio, denoted by P/E ratio. A high 

P/E means that an index’s price is high relative to earnings and 

overvalued. Its low value means that the price is low relative to 

earnings and undervalued. A potential investor prefers an index 

with a low P/E ratio. Therefore, the movement of the P/E ratio 

plays a crucial role in understanding the behaviour of the stock 

market. In this paper, the modelling of the P/E ratio for the Indian 

equity market stock index, NIFTY 50, using NNAR, MLP, and 

ELM neural network models, as well as the traditional ARIMA 

model with the Box-Jenkins method, is carried out. It is found that 

the MLP and NNAR neural network models outperform the 

ARIMA model.   

Keywords: Forecasting, Stock market, P/E Ratio, Neural 

Networks, Box-Jenkins Methodology 

I. INTRODUCTION

The Bombay Stock Exchange (BSE) and the National

Stock Exchange (NSE) are two prominent Indian stock 

exchanges that hold a significant place in the global financial 

market. The oldest of these two is the BSE, and its index, 

known as the SENSEX, consists of 30 of the largest and most 

actively traded stocks. NSE is regarded as the best in terms of 

technology and sophistication. The NSE also encompasses 22 

key sectors of the Indian economy. The NSE index is known 

as NIFTY-50, and it comprises 50 large and actively traded 

stocks. Investors and economists are drawn to the stock 

market because it offers high returns, albeit with significant 

risks. However, the information or data about the stock is 

usually incomplete, complex, uncertain, and vague, making it 

a challenging task to predict the future economic 

performance. Generally, investors invest in the stock market 

based on an analysis of available data. Trading in the stock 

market has gained widespread popularity worldwide and has 

become part of the daily routine for many investors, who aim 

to generate substantial profits. Due to the incomplete data, 

analysing the stock movement behaviour becomes a 

challenging task.  
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Advanced and robust predictive modelling can guide 

investors in classifying and identifying high-performance 

securities, enabling them to make informed investment 

decisions. Fundamental analysis, [7],[8] technical analysis, 

[9],[18],[25] and statistical analysis [11] like regression 

analysis [3] are used to estimate and gain from the market’s 

direction. Further, ARIMA, NNAR and Neural Networks 

modelling are discussed in [24],[5],[2],[6],[23] and [16].  

A. Price-to-Earnings Ratio (P/E)

The market value of a company is evaluated using the 

ratio of the present price per share to its earnings per share. 

This measure is known as the price-to-earnings ratio and is 

abbreviated as P/E ratio. It is used to calculate the fair value 

of the market by projecting future earnings per share. 

Typically, companies yield higher dividends in the future if 

their future earnings are expected to be higher. A share's price 

increases or decreases over a period according to the demand 

and speculation of investors in the stock. This ratio is helpful 

to investors to decide what amount to pay for a stock based 

on its earnings [4]. For this reason, investors use this ratio to 

evaluate the worth of a share by comparing its earnings 

multiple to that of other companies. The following formula 

evaluates the P/E ratio.    𝑃𝑟𝑖𝑐𝑒 𝑡𝑜 𝐸𝑎𝑟𝑛𝑖𝑛𝑔𝑠 𝑅𝑎𝑡𝑖𝑜 (𝑃/

𝐸 𝑅𝑎𝑡𝑖𝑜) =
𝑀𝑎𝑟𝑘𝑒𝑡 𝑣𝑎𝑙𝑢𝑒 𝑝𝑒𝑟 𝑠ℎ𝑎𝑟𝑒

𝐸𝑎𝑟𝑛𝑖𝑛𝑔𝑠 𝑝𝑒𝑟 𝑠ℎ𝑎𝑟𝑒

(1) 

The price to earnings ratio is of two types they are a) 

Trailing P/E ratio  

, b) Forward P/E ratio 

B. The Trailing P/E Ratio

The P/E ratio, which uses the previous 12 months' 

earnings, is known as the trailing P/E ratio. This is evaluated 

as the ratio of the present stock price to the last 12 months’ 

earnings per share (EPS) and is given by 

Trailing P E⁄  Ratio =  
Present Share Price

Trailing Twelve Months′Earnings per share

(2) 

C. Forward P/E Ratio

If the predicted earnings per share are used to evaluate the 

price-to-earnings ratio, then it is known as the forward price-

to-earnings ratio. Because the estimates of the earnings per 

share are used, this ratio is not reliable when compared to 

current earnings data. The predicted earnings can be 

estimated for the next 12 months or the next fiscal year. The 

formula for this ratio is defined as  
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Forward P E⁄  Ratio =
Market Value per Share

Predicted Earnings per Share
                  (3)  

II. LITERATURE REVIEW 

Forecasting of stock returns has emerged as a vital field 

of research in recent times. Very frequently, a linear 

relationship has been established between the returns of the 

stock and economic variables. The nonlinearity [1] pattern in 

the returns of the stocks, has shifted the focus of research on 

predicting the nonlinear pattern of the returns of the stocks. 

Nonlinear statistical modelling of stock returns requires that 

the model be defined in advance of the estimation. Because 

the returns of the stock market are uncertain and nonlinear, 

Artificial Neural Network (ANN) emerged as a preferred 

method in identifying the association between the 

performance of a stock and its factors, more precisely than 

many other statistical models [27]. Kim and Chun [21] 

applied probabilistic neural network to estimate the stock 

market index. Pantazopoulos used a Neuro-fuzzy approach 

[25] for forecasting the IBM stock prices. Kim and Han [20] 

applied neural networks developed by genetic algorithm 

which reduces the complexity of the feature space.  Siekmann 

[28] executed a adaptable fuzzy parameters network model 

which connects the first and second hidden layers of the 

network through the weights. Rong-Jun Li; Zhi-Bin Xiong 

[22] established a fuzzy neural network which works like a 

fuzzy inference system. Because this study employs a neural 

network forecasting approach for NIFTY-50, it will be 

beneficial in developing neural networks as an additional tool 

for forecasting the volatile Indian market. The self-similarity 

of this study helps understand the microstructure of the Indian 

stock market. 

III. METHODOLOGY 

Many researchers developed many forecasting models, 

economists and practitioners across the globe, using 

fundamental [7],[8], and analytical techniques [9],[12],[17] 

which yields approximately accurate prediction. Traditional 

forecasting methods [11] are used along with these methods 

of prediction. In forecasting a time series, the previous data 

of the response variable is analysed and modelled to identify 

the behaviour of the historic changes. The future of the 

variable under study is then forecasted using these models. 

Time series modelling and forecasting have two main 

approaches: i) the linear approach and ii) the nonlinear 

approach. The commonly known methods, which are linear, 

include trend line, time series regression, exponential 

smoothing, autoregressive model, moving average model, 

and ARIMA. Among these linear models, the model 

proposed by Box and Jenkins [11] known as ARIMA is used 

widely. This model is flexible because it represents various 

kinds of time series. Because the variance between the 

forecasted and original values is very high, the returns of the 

stock are not ideally linear. This indicates that there exists 

nonlinearity in the stock market and has been studied by 

several financial analysts and researchers [26], [1]. In many 

nonlinear techniques, the model must be specified in advance 

before estimating the parameters.  

 

 

A. Time Series Models 

a. Auto Regressive Model (AR) 

The general approach for modelling a univariate time 

series {Zt} is the Autoregressive (AR) model. In this model, 

the time series {Zt} depends on the linear combination of the 

previous p values of the time series {Zt} and an error term 

(random shock) 𝑒𝑡. Let {Zt} be a stationary time series with 

mean µ, and let 𝑌̃ = 𝑍𝑡 − 𝜇. Then the equation of the 

autoregressive model, denoted by AR(p), is  

𝑌̃𝑡 = 𝜔1𝑌̃𝑡−1 + 𝜔2𝑌̃𝑡−2 + ⋯ + 𝜔𝑝𝑌̃𝑡−𝑝 + 𝑒𝑡                        (4) 

where 𝑒𝑡 Is the error term. This model equation resembles a 

multiple linear regression model where the predictors are the 

lagged values of Ỹt. These AR(p) models can model different 

time series patterns. 

b. Moving Average Model (MA) 

Another application for modelling a univariate time series 

is the Moving Average model. In this model, the observed 

time series depends on the linear combination of previous q 

error terms. That is, at a period. t an error term 𝑒𝑡 Is activated, 

which is independent of the error terms of other periods. The 

time series is then generated by considering the weighted 

average of present and previous shocks. Mathematically, a 

moving average model can be formulated as 

   𝑌̃𝑡 = 𝑒𝑡 + 𝜃1𝑒𝑡−1 + ⋯ + 𝜃𝑞𝑒𝑡−𝑞                                          (5) 

The model parameter at time t is estimated by the mean of 

the previous q observations. Q is the length of the moving 

average interval. Because this model assumes a fixed mean, 

the estimates of the forecast for any number of time intervals 

in the future are precisely the same as the parameter estimate. 

This model provides a more accurate estimate of the mean 

when the mean is constant or fluctuates slowly. If there is a 

continuous mean, then the most significant value of q will 

provide a better estimate of the underlying mean. If the period 

of the moving average is longer, it will average out the effects 

of variability. 

c. Auto Regressive Integrated Moving Average 

(ARIMA) 

The widely used general class of models for forecasting a 

time series is known as the Auto Regressive Integrated 

Moving Average (ARIMA) model. This model is a 

generalization of the autoregressive moving average [16] 

model. The ARIMA model is identified by the parameters p, 

d and q, where p tells about the order of the AR process, d 

denotes the number of differencing needed to convert a non-

stationary time series to a stationary time series, and q tells 

about the order of the MA process. Hence, an ARIMA model, 

in general, is denoted by ARIMA (p, d, q). In this model, once 

the differencing process of order d is completed, the 

outcomes of the model must be integrated to produce the 

estimates and forecasts. This integration process in the 

ARIMA model is denoted by the letter “I”. The general 

equation of the ARIMA model can be written as:  

𝑌̃𝑡 = 𝜔1𝑌̃𝑡−1 + ⋯ + 𝜔𝑝𝑌̃𝑡−𝑝 + 𝑒𝑡 − 𝜃1𝑒𝑡−1 − ⋯ 𝜃𝑞𝑒𝑡−𝑞     (6) 

where 𝜔𝑘 Is the coefficient AR at lag  

k? 𝜃𝑘 It is the coefficient of MA  

at lag k.  
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The optimum Arima model using Box-Jenkins 

methodology [11] consists the four steps:  

(1) Stationarity test. 

(2) Identification of the model.  

(3) Estimation of the parameters. 

(4) Verifying model adequacy using diagnostic 

checking.  

d. Neural Networks: 

A new method of forecasting is the neural networks [23] 

method. These methods are based on the functioning of the 

human brain, which can be modelled using simple 

mathematical functions. These models address the 

complex, nonlinear relationships that exist between the 

target and predictor variables. 

e. Neural Network Auto Regressive NNAR(p.k): 

This neural network model is based on a feedforward 

network and is denoted by NNAR(p, k), where p represents 

the number of lagged inputs and k represents the number of 

nodes in the hidden layer. This model is a three-layer 

feedforward network consisting of an activation function and 

a linear combination function. The output (Yt) and the inputs 

(Yt-1, ..., Yt-p) of the model are related and can be expressed 

using the mathematical equation: 𝑌𝑡 = Ψ0 + ∑ Ψ𝑗 ∗𝑚
𝑗=1

𝑔(Ψ0,𝑗 + ∑ Ψ𝑖,𝑗 ∗ 𝑌𝑡−𝑖
𝑟
𝑖=1 ) + 𝑒𝑡                                                        (7) 

Where Ψ𝑖,𝑗 (i = 0, 1, 2,…, n,  j = 1, 2, …, h) and  Ψ𝑗 (j = 0, 1, 

2, …, h) are model parameters, m ' is the number of hidden 

nodes and ‘r’ is the number of input nodes. The activation 

function used for the output layer is linear, and the transfer 

function used in the hidden layer is a sigmoid function given 

by  𝑆𝑖𝑔(𝑥) =
1

1+𝑒𝑥𝑝(−𝑥)
                          (8) 

f. Multi-layer perceptron (MLP)  

Another neural network model considered for modelling 

and forecasting is the multilayer perceptron (MLP) model. In 

this model, training of the network is carried out using the 

back propagation method [5],[2],[6],[15]. The MLP model 

comprises an input layer, one or more hidden layers, and an 

output layer. An Artificial Neural Network performs well 

only when the inputs and the number of nodes in the hidden 

layer are selected carefully. It is essential to identify the 

significant relationships which exist in the time series. To 

achieve this, the network is trained on the samples of the 

previous data points. To evaluate the forecasts Yt, using 

previous observations, Yt-1,..., Yt-p, with ‘h’ nodes in the 

hidden layer, the prediction equation [13] [28] for a feed 

forward neural network with one hidden layer, the function is 

given by     𝑌𝑡 = 𝐺𝑜(Ψ𝑐𝑜 + ∑ Ψℎ𝑜 ∗ 𝐺ℎ(Ψ𝑐ℎ + ∑ Ψ𝑖ℎ ∗𝑖ℎ

𝑌𝑡−𝑖))              (9) 

Where Ψ𝑐ℎ Is the weight associated with the constant 

inputs and the neurons in the hidden layer?  Ψ𝑐𝑜 Is the weight 

associated with the constant input and the output? 𝑤𝑖ℎ Is the 

connection weight between the inputs and the hidden 

neurons, and 𝑤ℎ𝑜  Is the connection weight between the 

hidden neurons and the output neurons, respectively?  𝐺ℎ and 

𝐺𝑜 The activation functions enable the mappings from inputs 

to hidden nodes and hidden nodes to output(s), respectively. 

The sigmoid activation function used in the NNAR model is 

also used in the MLP.  

 

g. Extreme learning machines (ELM) 

A novel machine learning neural network algorithm 

used to model and forecast a time series is the extreme 

learning machines (ELM) algorithm proposed by Huang 

[19]. This algorithm is well-suited for a single hidden layer 

feed-forward neural network (SLFN) [13], which is 

identical to the feed-forward neural networks. The main 

feature of ELMs is that the input weights and the hidden 

layer bias will be attributed randomly [10]. Therefore, the 

architecture of the network resembles that of a linear 

system. The unknown weights connect the hidden layer 

with the output layer. Mooregeneralised4], generalized 

pseudo inverse, is used to obtain the solution to the linear 

system. The equation of the output function of the basic 

ELM for generalized SLFN can be expressed as         

𝑓(𝑥𝑖) = ∑ 𝛽𝑗ℎ𝑗(𝑥𝑖) = ℎ(𝑥𝑖)𝛽𝐿
𝑗=1                                  (10) 

Where ‘L’ is the number of hidden layer neurons, 𝛽 =

[𝛽1, 𝛽2, … , 𝛽𝑗 , … 𝛽𝐿]
𝑇
 Is the vector of the output weights 

associated with the hidden layer and the output nodes?                                         

ℎ(𝑥𝑖) = [ℎ1(𝑥𝑖), ℎ2(𝑥𝑖), … , ℎ𝑗(𝑥𝑖) … , ℎ𝐿(𝑥𝑖)] Is the output 

vector of the hidden layer with respect to the input vector 

‘X’, which is the activation function in SLFN. Hence ℎ𝑗(𝑥𝑖) 

expressed as ℎ1(𝑥𝑖) = 𝑔(𝑤𝑗 . 𝑥𝑖 + 𝑏𝑗). Since each input 

variable 𝑥𝑖 Generates an equation; there will be ‘n’ 

equations which can be summarized as  𝐻𝛽 = 𝑌  Where H 

is the matrix with hidden layer output given by  

𝐻 = [
ℎ1(𝑥1) ⋯ ℎ𝐿(𝑥1)

⋮ ⋱ ⋮
ℎ1(𝑥𝑛) ⋯ ℎ𝐿(𝑥𝑛)

] =

[
𝑔(𝑤1 ∗ 𝑥1 + 𝑏1) ⋯ 𝑔(𝑤𝐿 ∗ 𝑥1 + 𝑏𝐿)

⋮ ⋱ ⋮
𝑔(𝑤1 ∗ 𝑥𝑛 + 𝑏1) ⋯ 𝑔(𝑤𝐿 ∗ 𝑥𝑛 + 𝑏𝐿)

]                   (11) 

Where, 𝑤𝑗 = [𝑤𝑗1, 𝑤𝑗2, … , 𝑤 𝑗𝑖 , … , 𝑤𝑗𝑛]
𝑇
 is the weight 

vector connecting the jth hidden node and the input nodes,  

𝑤𝑗 . 𝑥𝑖  is the inner product of 𝑤𝑗  and 𝑥𝑖 and 𝑏𝑗 Is the 

threshold value of the jth hidden node.  In ELM, the 

weights 𝑤𝑗  and the threshold value 𝑏𝑗 They are assigned 

randomly and are not tuned. Once the random values are 

assigned, the output matrix H will be fixed. 

B. Test for Stationarity 

Using the Box-Jenkins methodology [11] to obtain an 

ARIMA model, the underlying time series should be 

stationary, i.e., the properties of the time series are 

independent of the time at which it is captured. This means 

that the average, variance, and autocovariance of the time 

series are independent of time. To identify patterns, the 

ARIMA model utilises lags of the data.  In general, the 

differencing process converts a non-stationary time series 

into a stationary time series. These differences are evaluated 

by considering the differences between the values of two 

consecutive periods. That is, the differencing process 

eliminates trends or cycles (if any) from the time series to 

convert it into a stationary time series. 
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a. Augmented Dickey Fuller Test (ADF)  

This test is used to test the stationarity of a time series. 

The null hypothesis assumed in this test is that the time series 

is non-stationary, and the alternative hypothesis is that it is 

stationary.  

The test statistic is given by 𝐷𝐹𝛾 =
𝛾̂

𝑆.𝐸.(𝛾̂)
            (12) 

Suppose the contribution of the lagged value to the change 

is non-significant, and there is an indication of a trend 

component. In that case, the null hypothesis is accepted, and 

it can be concluded that the time series is non-stationary. 

Otherwise, reject the null hypothesis and conclude that the 

time series is stationary. 

C. Model Identification 

The appropriate model will be selected by determining 

the optimal model parameters. To choose the optimal 

parameters of the model, one criterion is to use the plots of 

ACF and PACF, which must match the theoretical or actual 

values. Another criterion is to use the accuracy measure, viz., 

R2. The model with the highest R-squared value is considered 

the best model.  

D. Parameter Estimation 

The method most frequently used for estimating 

parameters in an ARIMA model is the maximum likelihood 

(ML) method. The parameters are determined in such a way 

that their maximum likelihood estimator values lead to the 

highest probability of producing the actual data, i.e., the 

parameter values that maximise the value of the likelihood 

function L. 

 

E. Diagnostic checking 

The identified time series models must be verified for 

model adequacy. To test the adequacy of the model, residual 

ACF and PACF plots should be examined to determine if any 

further structure is present. The model will be considered 

adequate only when the autocorrelation and partial 

autocorrelation functions are small. The forecasts are then 

generated using the best model. The model will be re-

estimated if any of the autocorrelations are large by adjusting 

the model parameters p and q. This process of verifying the 

residual ACF and PACF plots and changing the model 

parameters p and q should be continued until there is an 

indication that the resulting residuals do not exhibit any 

further structure. After obtaining the best model, it can be 

utilized to produce forecasts and associated probability limits. 

Alternatively, the model adequacy can be verified using the 

Box-Ljung test. This test assumes that the model fit is good 

and will be used to test for the possible rejection of this 

assumption. The test Statistic is given by    

  𝑄 = 𝑛(𝑛 + 2) ∑
𝑟̂𝑘

2

𝑛−𝑘

𝑚
𝑘=1                                  (13) 

where 𝑟̂𝑘 Is the estimated autocorrelation of the time series 

at lag k, and m is the number of lags being tested.  

IV. RESULTS 

A. Data 

The data is obtained from the website www.nseindia.com. 

The period of the study is 01-04-2014 to 31-05-2019. The 

dataset consists of 1394 observations. The summary of the 

dataset is    

Table 1: Descriptive Statistics of Data 

Measure Minimum First Quartile Median Mean Third Quartile Maximum 

PE 18.52 21.64 23.63 24.05 26.33 29.90 

The dataset under study is divided into two datasets: a train dataset consisting of 1,255 (90%) observations and a test dataset 

consisting of 139 (10%) observations. The time series models are fitted on the training dataset and validated on the test dataset 

using the R software. 

B. Test for Stationarity  

The plots of the dataset and the first differences (X) of the dataset are as follows:  

 

Figure 1: Time plot of the Data 
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Figure 2: Time Plot of the First Differences of Data 

It can be observed from the time plot of the data that a 

trend exists; hence, it can be concluded that the data is non-

stationary. But the First differences (X) do not exhibit any 

trend. Hence, it can be concluded that the First differences 

(X) are stationary in terms of average and variance. The ADF 

test results about the stationarity of the data are as follows: 

Table 2: ADF Test Results of the Data 

Test Statistic Lag order P-Value 

-3.1049 10 0.1106 

The P-value of the ADF test statistic is 0.1106. Since 

0.1106 > 0.05, conclude that the time series exhibits non-

stationarity. 

The ADF test results on the first differences (X) of the 

dataset are as follows: 

Table 3: ADF Test Results on the Differences of Data 

Test Statistic Lag order P-Value 

-10.46 10 0.01 

The P-value of the ADF test statistic on the first 

differences of the dataset (X) is less than 0.05, i.e., 0.01<0.05; 

hence, we accept the alternative hypothesis and conclude that 

the first differences of the dataset (X) are stationary. 

C. Model Identification 

In R software, the auto. The arima() function is used to 

obtain the optimum ARIMA. The optimum model is 

identified by considering the AIC value. The model with the 

smallest AIC value is regarded as the optimal model for 

forecasting. For the data set used in this paper, the optimum 

model is identified as ARIMA (1,1,1). 

The nnetar() function in R is used to fit an NNAR(p,k) 

model where ‘p’ and ‘k’ values are selected automatically 

by the function. The optimal number of lags for the model 

is equal to that of a linear AR(p) model. The network uses 

the previous data points iteratively to forecast the future 

data points, which are one step ahead. The one-step 

forecasts, obtained in this manner, along with the latest data 

points, are used as inputs to generate the two-step forecasts. 

For the data set used, the obtained NNAR model is 

NNAR(2,2). 

In R software, to fit a multi-layer perceptron model and 

an extreme learning machine model, the package used is 

nnfor(). The nnfor() package is capable of producing 

extrapolative (univariate) forecasts and also includes 

explanatory variables. The function used to fit an MLP is 

mlp(), and it requires the time series as input to model itself. 

For the data set used, the resulting network consists of 5 

hidden nodes, and it is trained 20 times. The network obtained 

generates different forecasts, and those forecasts are 

combined using the median operator.  For the data set used, 

the obtained multi-layer perceptron neural network model is 

MLP (2:5:1) 

 
Figure 3: MLP (2:5:1) 

The elm() function is used to fit the extreme learning 

machines (ELM) model. The inputs of the model are mostly 

identical to those of the MLP. The ELM model assumes a 

huge hidden layer, which will be pruned accordingly. For the 

data set used, the ELM model obtained is ELM (2:100:1) 

 

Figure 4: ELM (2:100:1) 
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D. Parameter Estimation 

The parameters of the best ARIMA model are as follows: 

Table 4: Parameter Estimates of ARIMA (1,1,1) 

Variable Coefficient Standard Error p-value 

AR(1) -0.6077 0.1852 0.001034 

MA(1) 0.6722 0.1725 0.000097 

Table 5: Accuracy Measures of ARIMA (1,1,1) 

Measure Value 

Estimated 𝜎2 0.04623 

Log likelihood d 149.12 

AIC -292.23 

BIC -276.83 

The P-values of the parameters are less than the 

significance level of 0.05, i.e., the AR(1) and MA(1) 

parameters are significant at the 5% level. According to the 

optimum  

ARIMA (1, 1, 1), the equation of the model is  

 𝑌𝑡̃ = −0.6077 ∗ 𝑌̃𝑡−1 + 𝑒𝑡 +  0.6722 ∗ 𝑒𝑡−1               (14) 

The R2 measure for the four time series models is as follows:  

Table 6: Comparison of the Four Time Series Models 

S. No. Model R2 

1 ARIMA (1,1,1) 0.993 

2 NNAR (2,2) 0.993 

3 MLP (2:5:1) 0.992 

4 ELM (2:100:1) 0.992 

The accuracy measures of the best ARIMA (1,1,1) and the 

neural network models 

 NNAR (2,2), MLP(2:5:1) and ELM(2:100:1) models on train 

data are as follows: 

Table 7: Accuracy Measures of the Four Time Series Models  

 RMSE MAE MAPE 

ARIMA (1,1,1) 0.215 0.157 0.671 

NNAR (2,2) 0.215 0.157 0.674 

MLP (2:5:1) 0.215 0.158 0.675 

ELM (2:100:1) 0.221 0.164 0.702 

E. Diagnostic Checking 

The time plot, ACF, PACF, and Q-Q plot of the residuals 

of the four models are as follows: 

 
Figure 5: Time Plot of Residuals of the Time Series Models 
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Figure 6: ACF of Residuals of The Time Series Models 

 

 

Figure 7: PACF of Residuals of the Time Series Models 

 

 

Figure 8: Normal Q-Q Plot of the Residuals of the Time Series Models 
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The time plot and q-q plots suggest that the residuals 

follow a normal distribution. The ACF and PACF plots of the 

residuals obtained by the models ARIMA (1,1,1), 

NNAR(2,2) and MLP(2:5:1) suggest that the residuals are 

independently, identically distributed normal variates with 

mean zero 0 and variance 𝜎𝑒
2 i.e., i.i.d. 𝑁(0, 𝜎𝑒

2).  The ACF 

and PACF functions of the residuals of the ELM (2:100:1) 

model suggest that the residuals are not i.i.d  𝑁(0, 𝜎𝑒
2). The 

diagnostic test, namely the Box-Ljung test, is applied to the 

residuals of all four time series models in R. The output of the 

diagnostic test is as follows: 

TABLE 8: Lung-Box test 

MODEL Statistic (χ2) DF p-value 

ARIMA (1,1,1) 0.0035 1 > 0.05 

NNAR (2,2) 0.0011 1 > 0.05 

MLP (2:5:1) 0.1108 1 > 0.05 

ELM (2:100:1) 10.582 1 < 0.05 

Since the probability corresponding to the Box-Ljung Q-

statistic is greater than 0.05, for the three models, ARIMA 

(1,1,1), NNAR (2,2) and MLP (2:5:1) are adequate. The p-

value of the ELM (2:100:1) is less than 0.05, indicating that 

the model is not sufficient for the data set used in this study. 

Hence, it can be concluded that the selected autoregressive 

integrated moving average ARIMA (1,1,1), Neural network 

autoregressive NNAR (2,2), and Multi-Layer Perceptron 

MLP (2:5:1) models are adequate for the time series data used 

in this study. 

V. FORECASTS 

The forecasted values obtained by the four models for the 

test data are shown in the following graph. 

 
Figure 9: Forecasts Obtained by the Four Time Series 

Models for the Test Dataset 

The accuracy measures of the four time series models for 

the forecasted values of the test data are as follows: 

Table 9. Accuracy Measures of Forecasted Values by the 

Four Time Series Models 

Model RMSE MAE MAPE 

ARIMA (1,1,1) 1.419 1.216 4.233 

NNAR (2,2) 0.920 0.797 2.851 

MLP (2:5:1) 0.900 0.769 2.762 

ELM (2:100:1) 2.505 2.369 9.378 

VI. CONCLUSION 

In this study, four models —ARIMA (1,1,1), NNAR (2,2), 

MLP (2:5:1), and ELM (2:100:1) — were tested and 

compared to each other for modelling the Indian equity market 

stock index, NIFTY-50. Of the four time series models 

considered, the ARIMA (1,1,1), NNAR(2,2) and MLP(2:5:1) 

are found to be adequate using the Ljung-Box test (Table 8). 

Of these three models, the NNAR(2,2) and MLP(2:5:1) 

models performed better than the ARIMA (1,1,1) model 

(Table 9) in terms of forecasting capabilities. The errors in the 

forecasting procedure were much lower in the MLP model 

compared to the other models considered in the study (Table 

9). Upon observing the accuracy measures Root Mean 

Squared Error (RMSE), Mean absolute Error (MAE) and 

Mean Absolute Percentage Error (MAPE) (Table 9) for the 

forecasted values, it can be concluded that the MLP (2:5:1) 

model along with NNAR (2,2) out performs the other time 

series models considered in the study. 
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