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Abstract: The ratio of present price of an index to its earnings is 
known as its price to earnings ratio denoted by P/E ratio. A high 
P/E means that an index’s price is high relative to earnings and 
overvalued. Its low value means that price is low relative to 
earnings and undervalued. A potential investor prefers an index 
with low P/E ratio. Therefore, the movement of the P/E ratio plays 
a crucial role in understanding the behaviour of the stock market. 
In this paper the modelling of the P/E ratio for the Indian equity 
market stock index NIFTY 50 using NNAR, MLP and ELM neural 
networks models and the traditional ARIMA model with Box-
Jenkin’s method is carried out. It is found that MLP and NNAR 
neural networks models performed better than that of ARIMA 
model.   
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I. INTRODUCTION

Bombay Stock Exchange (BSE) and National Stock
Exchange (NSE) are the two Indian stock exchanges which 
holds a prominent place in the world. The oldest among these 
two is BSE and its index known as SENSEX, which consists 
of 30 of the large and most actively-traded stocks. NSE is 
regarded as the best in terms of technology and 
sophistication. NSE also includes 22 significant sectors of the 
Indian economy. The index of NSE is known as NIFTY-50 
and it consists 50 large and actively traded stocks. Investors 
and economists are attracted to invest in stock market because 
it involves high gains as well as high risks. But, usually, the 
information or data about the stock will be incomplete, 
complex, uncertain and vague which causes the prediction of 
the future economic performance a challengeable task. In 
general investors, invest in the stock market based on analysis 
of the available data. Trading in the stock market has gained 
wide popularity in the world and becomes part of daily 
routine for many investors to gain huge profits. Because of 
the incomplete data, analysing the stock movement behaviour 
becomes a tuff task.  
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The advanced and robust predictive modelling can guide 
investors in classifying and identifying high performance 
securities to take the best investment decisions. Fundamental 
analysis, [7],[8] technical analysis, [9],[18],[25] and 
statistical analysis [11] like regression analysis [3] are used 
to estimate and gain from the market’s direction. Further, 
ARIMA, NNAR and Neural Networks modelling are 
discussed in [24],[5],[2],[6],[23] and [16].  

A. Price-to-Earnings Ratio (P/E)
The measure of the market value of a company is

evaluated using the ratio of the present price per share relative 
to its earnings per share. This measure is known as the price 
to earnings ratio and is abbreviated as P/E ratio. It is used to 
calculate the fair value of the market by projecting future 
earnings per share. Usually, the companies yield higher 
dividends in the future if their future earnings are higher. A 
share's price increases/decreases over a period according to 
the demand and speculation of investors of the stock. This 
ratio is useful to investors to decide as what amount to be paid 
for a stock based on its earnings [4]. Because of this reason 
investors use this ratio to evaluate the worth of a share by its 
multiple earnings. The P/E ratio is evaluated by the following 
formula.    𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑡𝑡𝑡𝑡 𝐸𝐸𝐸𝐸𝑃𝑃𝐸𝐸𝑃𝑃𝐸𝐸𝐸𝐸𝐸𝐸 𝑅𝑅𝐸𝐸𝑡𝑡𝑃𝑃𝑡𝑡 (𝑃𝑃/𝐸𝐸 𝑅𝑅𝐸𝐸𝑡𝑡𝑃𝑃𝑡𝑡) =
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑣𝑣𝑀𝑀𝑣𝑣𝑣𝑣𝑀𝑀 𝑝𝑝𝑀𝑀𝑀𝑀 𝑠𝑠ℎ𝑀𝑀𝑀𝑀𝑀𝑀
𝐸𝐸𝑀𝑀𝑀𝑀𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑠𝑠 𝑝𝑝𝑀𝑀𝑀𝑀 𝑠𝑠ℎ𝑀𝑀𝑀𝑀𝑀𝑀

 (1) 
The price to earnings ratio is of two types, they are a) 

Trailing P/E ratio  
b) Forward P/E ratio

B. The Trailing P/E Ratio
The P/E ratio which uses the previous 12 months earnings

is known as the trailing P/E ratio. This is evaluated as the ratio 
of the present stock price to the previous 12 month’s earnings 
per share (EPS) and is given by 
Trailing P E⁄  Ratio =  Present Share Price

Trailing Twelve Months′Earnings per share

(2) 

C. Forward P/E Ratio
If the predicted earnings per share are used to evaluate the

price to earnings ratio, then it is known as forward price to 
earnings ratio. Because the estimates of the earnings per share 
are used, this ratio is not reliable when compared to current 
earnings data. The predicted earnings can be the next 12 
months estimates or the estimates of the next fiscal year. The 
formula for this ratio is defined as  
Forward P E⁄  Ratio = Market Value per Share

Predicted Earnings per Share
(3)
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II. LITERATURE REVIEW 

Forecasting of stock returns has emerged as a vital field 
of research in recent times. Very frequently, a linear 
relationship has been established between the returns of the 
stock and economic variables. The nonlinearity [1] pattern in 
the returns of the stocks, has shifted the focus of research on 
predicting the nonlinear pattern of the returns of the stocks. 
Nonlinear statistical modelling on the stock returns requires 
that the model must be defined in advance to the estimation. 
Because the returns of stock market are uncertain and 
nonlinear in nature, Artificial Neural Network (ANN), 
emerged as a preferred method in identifying the association 
between the performance of a stock and its factors, more 
precisely than many other statistical models [27][32][33]. 
Kim and Chun [21] applied probabilistic neural network to 
estimate the stock market index. Neuro fuzzy approach was 
used by Pantazopoulos [25] for forecasting the IBM stock 
prices. Kim and Han [20] applied neural networks developed 
by genetic algorithm which reduces the complexity of the 
feature space.  Siekmann [28] executed a adaptable fuzzy 
parameters network model which connects the first and 
second hidden layers of the network through the weights. 
Rong-Jun Li; Zhi-Bin Xiong [22] established a fuzzy neural 
network which works like a fuzzy inference system. Because 
this study is based on a neural network forecasting approach 
on NIFTY-50, will be useful in developing neural network as 
another tool for forecasting the hugely unstable Indian 
market. The self-similarity of this study is useful in 
understanding the microstructure of Indian stock market. 

III. METHODOLOGY 

Many forecasting models were developed by many 
researchers, economists and practitioners across the globe 
using fundamental [7],[8], and analytical techniques 
[9],[12],[17] which yields approximately accurate prediction. 
Traditional forecasting methods [11] are used along with 
these methods of prediction. In forecasting a time series, the 
previous data of the response variable is analysed and 
modelled to identify the behaviour of the historic changes. 
The future of the variable under study is then forecasted using 
these models. Time series modelling and forecasting has two 
main approaches i) linear approach ii) nonlinear approach. 
The commonly known methods which are linear in nature are 
trend line, time series regression, exponential smoothing, 
autoregressive model, moving average model and ARIMA. 
Among these linear models, the model proposed by Box and 
Jenkins [11] known as ARIMA is used widely. This model is 
flexible because it represents various kinds of time series. 
Because the variance between the forecasted and original 
values is very high, the returns of the stock are not ideally 
linear. This indicates that there exists nonlinearity in the stock 
market and studied by several financial analyst and 
researchers [26], [1]. In many nonlinear techniques, before 
estimating the parameters, the model must be specified in 
advance.  

A. Time Series Models 
a. Auto Regressive Model (AR) 

The general approach for modelling a univariate time 
series {Zt} is the Auto Regressive (AR) model. In this model, 

the time series {Zt} depends on the linear combination of the 
previous p values of the time series {Zt} and an error term 
(random shock) 𝑃𝑃𝑀𝑀. Let {Zt} be a stationary time series with 
mean µ and let 𝑌𝑌� = 𝑍𝑍𝑀𝑀 − 𝜇𝜇. Then the equation of the 
autoregressive model denoted by AR(p) is  

𝑌𝑌�𝑀𝑀 = 𝜔𝜔1𝑌𝑌�𝑀𝑀−1 + 𝜔𝜔2𝑌𝑌�𝑀𝑀−2 + ⋯+ 𝜔𝜔𝑝𝑝𝑌𝑌�𝑀𝑀−𝑝𝑝 + 𝑃𝑃𝑀𝑀                        (4) 

where 𝑃𝑃𝑀𝑀 is error term. This model equation resembles a 
multiple linear regression model where the predictors are the 
lagged values of Y�t. Different time series patterns can be 
modelled by these AR(p) models. 

b. Moving Average Model (MA) 
Another application for modelling a univariate time series 

is the Moving Average model. In this model, the observed 
time series depends on the linear combination of previous q 
error terms. That is, at period t an error term 𝑃𝑃𝑀𝑀 is activated 
which is independent of error terms of other periods. The time 
series is then generated by a considering the weighted average 
of present and previous shocks. Mathematically, a moving 
average model can be formulated as 

   𝑌𝑌�𝑀𝑀 = 𝑃𝑃𝑀𝑀 + 𝜃𝜃1𝑃𝑃𝑀𝑀−1 + ⋯+ 𝜃𝜃𝑞𝑞𝑃𝑃𝑀𝑀−𝑞𝑞                                          (5) 

The model parameter at time t is estimated by the mean of 
the previous q observations. q is the length of the moving 
average interval. Because this model assumes a fixed mean, 
the estimates of the forecast of any number of time intervals 
in the future is exactly same as the parameter estimate. This 
model provides a better estimate of the mean when the mean 
is constant or fluctuating slowly. If there is constant mean, 
then the largest value of q will provide a better estimate of the 
underlying mean. If the period of the moving average is 
longer, then it will average out the effects of variability. 

c. Auto Regressive Integrated Moving Average 
(ARIMA) 

The widely used general class of models for forecasting a 
time series is known as Auto regressive Integrated Moving 
Average model. This model is a generalization of 
autoregressive moving average [16] model. The ARIMA 
model is identified by the parameters p, d and q and where p 
tells about the order of AR process, d denotes the number of 
differencing needed to convert a non-stationary time series to 
stationary time series and q tells about the order of the MA 
process. Hence a ARIMA model, in general, is denoted by 
ARIMA (p, d, q). In this model, once the differencing process 
of order d is completed, the outcomes of the model must be 
integrated to produce the estimates and forecasts. This 
integration process in the ARIMA model is denoted by the 
letter “I”. The general equation of the ARIMA model can be 
written as:  
𝑌𝑌�𝑀𝑀 = 𝜔𝜔1𝑌𝑌�𝑀𝑀−1 + ⋯+ 𝜔𝜔𝑝𝑝𝑌𝑌�𝑀𝑀−𝑝𝑝 + 𝑃𝑃𝑀𝑀 − 𝜃𝜃1𝑃𝑃𝑀𝑀−1 − ⋯𝜃𝜃𝑞𝑞𝑃𝑃𝑀𝑀−𝑞𝑞     (6) 

where 𝜔𝜔𝑀𝑀 is the coefficient AR at lag k, 𝜃𝜃𝑀𝑀 is the coefficient 
of MA at lag k.  

The optimum Arima model using Box-Jenkins 
methodology [11] consists the four steps:  
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(1) Stationarity test. 
(2) Identification of the model.  
(3) Estimation of the parameters. 
(4) Verifying model adequacy using diagnostic 

checking.  

d. Neural Networks: 
A new method of forecasting is the neural networks [23] 

method. These methods are based on the functioning of 
human brain which can be modelled using simple 
mathematical functions. These models address the complex 
nonlinear relationships which exists between the target and 
predictor variables. 

e. Neural Network Auto Regressive NNAR(p.k): 
This neural network model is based on a feed forward 

network and is denoted by NNAR(p,k) where p  and k 
represents the lagged inputs and the nodes in the hidden layer 
respectively. This model is a 3 layered feed forward network 
consisting of an activation function and a linear combination 
function. The output (Yt) and the inputs (Yt-1, ..., Yt-p) of the 
model are related and can be expressed using the 
mathematical equation: 𝑌𝑌𝑀𝑀 = Ψ0 + ∑ Ψ𝑗𝑗 ∗ 𝐸𝐸�Ψ0,𝑗𝑗 +𝑚𝑚

𝑗𝑗=1

∑ Ψ𝐸𝐸,𝑗𝑗 ∗ 𝑌𝑌𝑀𝑀−𝐸𝐸𝑀𝑀
𝐸𝐸=1 � + 𝑃𝑃𝑀𝑀                                                        (7) 

Where Ψ𝐸𝐸,𝑗𝑗 (i = 0, 1, 2,…, n,  j = 1, 2, …, h) and  Ψ𝑗𝑗 (j = 0, 1, 
2, …, h) are model parameters,     ‘m' is number of hidden 
nodes and ‘r’ is number of input nodes. The activation 
function used for the output layer is a linear function and the 
transfer function used in the hidden layer is a sigmoid 
function given by  𝑆𝑆𝑃𝑃𝐸𝐸(𝑥𝑥) = 1

1+𝑀𝑀𝑒𝑒𝑝𝑝(−𝑒𝑒)
                          (8) 

f. Multi layer perceptron (MLP)  
Another neural network model considered for modelling 

and forecasting is the multilayer perceptron (MLP) model. In 
this model training of the network is carried out using back 
propagation method [5],[2],[6],[15]. The MLP model 
comprises of an input layer, more than one hidden layer and 
an output. An Artificial Neural network performs well, only 
when the inputs and number of nodes in the hidden layer are 
selected carefully. It is important to identify the significant 
relationships which exists in the time series. To achieve this, 
the network is trained on the samples of the previous data 
points. To evaluate the forecasts Yt, using previous 
observations, Yt-1, .., Yt-p, with ‘h’ nodes in the hidden layer, 
the prediction equation [13] [28] [29] [30] [31] for a feed 
forward neural network with one hidden layer is given by     
𝑌𝑌𝑀𝑀 = 𝐺𝐺𝑜𝑜(Ψ𝑐𝑐𝑜𝑜 + ∑ Ψℎ𝑜𝑜 ∗ 𝐺𝐺ℎ(Ψ𝑐𝑐ℎ + ∑ Ψ𝐸𝐸ℎ ∗ 𝑌𝑌𝑀𝑀−𝐸𝐸𝐸𝐸 )ℎ )              (9) 

Where Ψ𝑐𝑐ℎ is the weight associated with the constant 
inputs and the neurons in the hidden layer,  Ψ𝑐𝑐𝑜𝑜 is the weight 
associated with the constant input and the output, 𝑤𝑤𝐸𝐸ℎ is the 
connection weight between the inputs and the hidden neurons 
and 𝑤𝑤ℎ𝑜𝑜  is the connection weight between the hidden 
neurons and the output respectively.  𝐺𝐺ℎ and 𝐺𝐺𝑜𝑜 are the 
activation functions which enables the mappings from inputs 
to hidden nodes and from hidden nodes to output(s) 
respectively. The sigmoid activation function used in NNAR 
model is also used in MLP.  

 
 
 

g. Extreme learning machines (ELM) 
A novel machine learning neural network algorithm 

used to model and forecast a time series is the extreme 
learning machines (ELM) algorithm proposed by Huang 
[19]. This algorithm well suits for single hidden layer feed-
forward neural network (SLFN) [13], which is identical to 
the feed- forward neural networks. The main feature of 
ELMs is that the input weights and the hidden layer bias 
will be attributed randomly [10]. Therefore, the 
architecture of the network resembles to the resolution of a 
linear system. The unknown weights connect the hidden 
layer with the output layer. Moore-Penrose [14], 
generalized pseudo inverse, is used to obtain the solution 
to the linear system. The equation of the output function of 
the basic ELM for generalized SLFN can be expressed as         
𝑓𝑓(𝑥𝑥𝐸𝐸) = ∑ 𝛽𝛽𝑗𝑗ℎ𝑗𝑗(𝑥𝑥𝐸𝐸) = ℎ(𝑥𝑥𝐸𝐸)𝛽𝛽𝐿𝐿

𝑗𝑗=1                                  (10) 
Where ‘L’ is the number of hidden layer neurons, 𝛽𝛽 =

�𝛽𝛽1,𝛽𝛽2, … ,𝛽𝛽𝑗𝑗 , …𝛽𝛽𝐿𝐿�
𝑇𝑇
 is the vector of the output weights 

associated with the hidden layer and the output nodes,                                         
ℎ(𝑥𝑥𝐸𝐸) = �ℎ1(𝑥𝑥𝐸𝐸), ℎ2(𝑥𝑥𝐸𝐸), … , ℎ𝑗𝑗(𝑥𝑥𝐸𝐸) … , ℎ𝐿𝐿(𝑥𝑥𝐸𝐸)� is the output 
vector of the hidden layer with respect to the input vector 
‘X’ which is the activation function in SLFN. Hence ℎ𝑗𝑗(𝑥𝑥𝐸𝐸) 
expressed as ℎ1(𝑥𝑥𝐸𝐸) = 𝐸𝐸(𝑤𝑤𝑗𝑗 . 𝑥𝑥𝐸𝐸 + 𝑏𝑏𝑗𝑗). Since each input 
variable 𝑥𝑥𝐸𝐸 generates an equation, there will be ‘n’ 
equations which can be summarized as  𝐻𝐻𝛽𝛽 = 𝑌𝑌  where H 
is the matrix with hidden layer output given by  

𝐻𝐻 = �
ℎ1(𝑥𝑥1) ⋯ ℎ𝐿𝐿(𝑥𝑥1)
⋮ ⋱ ⋮

ℎ1(𝑥𝑥𝐸𝐸) ⋯ ℎ𝐿𝐿(𝑥𝑥𝐸𝐸)
� =

�
𝐸𝐸(𝑤𝑤1 ∗ 𝑥𝑥1 + 𝑏𝑏1) ⋯ 𝐸𝐸(𝑤𝑤𝐿𝐿 ∗ 𝑥𝑥1 + 𝑏𝑏𝐿𝐿)

⋮ ⋱ ⋮
𝐸𝐸(𝑤𝑤1 ∗ 𝑥𝑥𝐸𝐸 + 𝑏𝑏1) ⋯ 𝐸𝐸(𝑤𝑤𝐿𝐿 ∗ 𝑥𝑥𝐸𝐸 + 𝑏𝑏𝐿𝐿)

�                   (11) 

Where, 𝑤𝑤𝑗𝑗 = �𝑤𝑤𝑗𝑗1,𝑤𝑤𝑗𝑗2, … ,𝑤𝑤 𝑗𝑗𝐸𝐸 , … ,𝑤𝑤𝑗𝑗𝐸𝐸�
𝑇𝑇
 is the weight 

vector connecting the jth hidden node and the input nodes,  
𝑤𝑤𝑗𝑗 .𝑥𝑥𝐸𝐸  is the inner product of 𝑤𝑤𝑗𝑗  and 𝑥𝑥𝐸𝐸 and 𝑏𝑏𝑗𝑗 is the 
threshold value of the jth hidden node.  In ELM, the 
weights 𝑤𝑤𝑗𝑗  and the threshold value 𝑏𝑏𝑗𝑗 are assigned 
randomly and are not tuned. Once the random values are 
assigned, then the output matrix H will be fixed. 

B. Test for Stationarity 
Using Box-Jenkins methodology [11], to obtain a 

ARIMA model, the underlying time series should be 
stationary i.e., the properties of the time series are 
independent of time at which it is captured. This means that, 
the average, variance and auto covariance of the time series 
is independent of time. To find out the patterns, the ARIMA 
model uses lags of the data.  In general, the differencing 
process converts a non-stationary time series into a stationary 
time series. These differences are evaluated by considering 
the differences between the values of two consecutive 
periods. That is, the differencing process eliminates trends or 
cycles (if any), from the time series to convert it into a 
stationary time series. 
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a. Augmented Dickey Fuller Test (ADF)  
This test is used to test the stationarity of a time series. 

The null hypothesis assumed in this test is that the time series 
is non-stationary and the alternative that it is stationary.  

The test statistic is given by 𝐷𝐷𝐷𝐷𝛾𝛾 = 𝛾𝛾�
𝑆𝑆.𝐸𝐸.(𝛾𝛾�)

            (12) 

If, the contribution of the lagged value to the change is 
non-significant and there is an indication of a trend 
component, then the null hypothesis is accepted and it can be 
concluded that the time series is non-stationary otherwise 
reject the null hypothesis and conclude that the time series is 
stationary. 

C. Model Identification 
The appropriate model will be selected by determining 

the optimal model parameters. To select the optimal 
parameters of the model, one criterion is to use the plots of 
ACF and PACF, which must match with the theoretical or 
actual values. Another criterion is to use the accuracy 
measure, viz., R2. The model with the highest R2 is 
considered to be the best model.  

D. Parameter Estimation 
The method that is frequently used for estimating the 

parameters in ARIMA model is maximum likelihood (M.L.). 
The parameters are determined in such way that their 
maximum likelihood estimator values lead to the highest 
probability of producing the actual data, i.e., the parameter 
values which maximizes the value of the likelihood function 
L. 

 
 

 

E. Diagnostic checking 
The time series models which are identified, must be 

verified for the model adequacy. To test the adequacy of the 
model, residual ACF and PACF plots must be studied to see 
that any further structure is possible or not. The model will be 
considered adequate only when the autocorrelation and 
partial autocorrelation functions are small. The forecasts are 
then generated using the best model. The model will be re-
estimated if any of the autocorrelations are large by adjusting 
the model parameters p and q. This process of verifying the 
residual ACF and PACF plots and adjusting the model 
parameters p and q should be continued until there is an 
indication that the resulting residuals do not exhibit any 
further structure. After obtaining the best model, it can be 
utilized to produce forecasts and associated probability limits. 
Alternatively, the model adequacy can be verified using Box-
Ljung test. This test assumes that the model fit is good and 
will be tested for the possible rejection of the assumption. The 
test Statistic is given by    

  𝑄𝑄 = 𝐸𝐸(𝐸𝐸 + 2)∑ �̂�𝑀𝑘𝑘
2

𝐸𝐸−𝑀𝑀
𝑚𝑚
𝑀𝑀=1                                  (13) 

where �̂�𝑃𝑀𝑀 is the estimated autocorrelation of the time series 
at lag k, and m is the number of lags being tested.  

IV. RESULTS 

A. Data 
The data is obtained from the website www.nseindia.com. 

The period of the study is 01-04-2014 to 31-05-2019. The 
dataset consists of 1394 observations. The summary of the 
dataset is    

Table 1: Descriptive Statistics of Data 
Measure Minimum First Quartile Median Mean Third Quartile Maximum 

PE 18.52 21.64 23.63 24.05 26.33 29.90 
The dataset under study is divided into 2 datasets viz., train dataset consisting of 1255 (90%) observations and test dataset 

consists of 139(10%) observations. The time series models are fitted on train dataset and validated on test dataset using the R 
software. 

B. Test for Stationarity  
The plots of the dataset and the first differences (X) of the dataset are as follows:  

 

Figure 1: Time plot of the Data 

https://doi.org/10.35940/ijmh.F1576.10050124
http://www.ijmh.org/


International Journal of Management and Humanities (IJMH) 
ISSN: 2394-0913 (Online), Volume-10 Issue-5, January 2024  

                                      5 
Retrieval Number: 100.1/ijmh.F1576029623 
DOI: 10.35940/ijmh.F1576.10050124 
Journal Website: www.ijmh.org 
 

Published By: 
Blue Eyes Intelligence Engineering 
& Sciences Publication (BEIESP) 
© Copyright: All rights reserved. 

 
Figure 2: Time Plot of the First Differences of Data 

It can be found from time plot of the data, that there exists 
a trend in the data, hence it can be concluded that the data is 
non-stationery. But the First differences (X) do not exhibit 
any trend. Hence it can be concluded that the First differences 
(X) is stationary in average and variance. The ADF test 
results about the stationarity of the data is follows: 

Table 2: ADF Test Results of the Data 
Test Statistic Lag order P-Value 

-3.1049 10 0.1106 
The P-value of the ADF test statistic is 0.1106. Since 

0.1106 > 0.05, conclude that the time series exhibits non-
stationarity. 

The ADF test results on the first differences (X) of the 
dataset, is as follows: 

Table 3: ADF Test Results on the Differences of Data 
Test Statistic Lag order P-Value 

-10.46 10 0.01 
The P-value of the ADF test statistic on the first 

differences of the dataset (X) is less than 0.05, i.e., 0.01<0.05, 
hence accept the alternative hypothesis and conclude that the   
first differences of the dataset (X) is stationary. 

C. Model Identification 
In R software the auto.arima() function is used to obtain 

the optimum ARIMA. The optimum model is identified by 
considering the AIC value. The model with the smallest AIC 
value is considered as the optimum model for forecasting. For 
the data set used in this paper, the optimum model is 
identified as ARIMA (1,1,1). 

The nnetar() function in R, is used to fit an NNAR(p,k) 
model where ‘p’ and ‘k’ values are selected automatically 
by the function. The optimal number of lags for the model 
is equal to that of a linear AR(p) model. The network uses 
the previous data points iteratively to forecast the future 
data points which are one-step ahead. The one step 
forecasts, so obtained, along with the previous data points 
are used as inputs to obtain the two step forecasts. For the 
data set used, the obtained the NNAR model is NNAR(2,2). 

In R software, to fit multi-layer perceptron model and 
extreme leaning machines model, the package used is nnfor(). 
The nnfor() package is capable of producing extrapolative 

(univariate) forecasts and also includes explanatory variables. 
The function used to fit a MLP is mlp() and it  requires the 
time series  as input to model itself. For the data set used, the 
resulting network consists of 5 hidden nodes and it is trained 
20 times. The network obtained generates different forecasts 
and those forecasts are combined using the median operator.  
For the data set used, the obtained multi- layer perceptron 
neural network model is MLP (2:5:1) 

 
Figure 3: MLP (2:5:1) 

The elm () function is used fit the extreme learning 
machines (ELM) model. The inputs of the model are mostly 
identical to that of mlp(). The ELM model assumes a very 
large hidden layer which will be pruned accordingly. For the 
data set used, the ELM model obtained is ELM (2:100:1) 

 
Figure 4: ELM (2:100:1) 
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D. Parameter Estimation 
The parameters of the best ARIMA model are as follows: 

Table 4: Parameter Estimates of ARIMA (1,1,1) 
Variable Coefficient Standard Error p-value 

AR(1) -0.6077 0.1852 0.001034 
MA(1) 0.6722 0.1725 0.000097 

Table 5: Accuracy Measures of ARIMA (1,1,1) 
Measure Value 

Estimated 𝜎𝜎2 0.04623 
Log likelihood d 149.12 

AIC -292.23 
BIC -276.83 

The P-values of the parameters are less than the 
significance level 0.05, i.e., the AR(1) and MA(1) parameters 
are significance at 5% . According to the optimum  
ARIMA (1, 1, 1), the equation of the model is  

 𝑌𝑌𝑀𝑀� = −0.6077 ∗ 𝑌𝑌�𝑀𝑀−1 + 𝑃𝑃𝑀𝑀 +  0.6722 ∗ 𝑃𝑃𝑀𝑀−1               (14) 

The R2 measure for the four time series models is as follows:  

Table 6: Comparison of the Four Time Series Models 
S. No. Model R2 

1 ARIMA (1,1,1) 0.993 
2 NNAR (2,2) 0.993 
3 MLP (2:5:1) 0.992 
4 ELM (2:100:1) 0.992 

The accuracy measures of the best ARIMA (1,1,1) and the 
neural network models 
 NNAR (2,2), MLP(2:5:1) and ELM(2:100:1) models on train 
data are as follows: 
Table 7: Accuracy Measures of the Four Time Series Models  

 RMSE MAE MAPE 
ARIMA (1,1,1) 0.215 0.157 0.671 

NNAR (2,2) 0.215 0.157 0.674 
MLP (2:5:1) 0.215 0.158 0.675 

ELM (2:100:1) 0.221 0.164 0.702 

E. Diagnostic Checking 
The time plot, ACF, PACF and Q-Q plot of the residuals 

of the four models are as follows: 

 
Figure 5: Time Plot of Residuals of the Time Series Models 
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Figure 6: ACF of Residuals of The Time Series Models 

 

 

Figure 7: PACF of Residuals of the Time Series Models 

 

 

Figure 8: Normal Q-Q Plot of the Residuals of the Time Series Models 
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The time plot, q-q plots suggests that the residuals follow 
normal distribution. The ACF and PACF plots of the 
residuals obtained by the models ARIMA (1,1,1), 
NNAR(2,2) and MLP(2:5:1),  suggests that the residuals are 
independently, identically distributed normal variates with 
mean zero (0) and variance 𝜎𝜎𝑀𝑀2 i.e., i.i.d   𝑁𝑁(0,𝜎𝜎𝑀𝑀2).  The ACF 
and PACF functions of the residuals of ELM (2:100:1) model 
suggests that the residuals are not i.i.d  𝑁𝑁(0,𝜎𝜎𝑀𝑀2). The 
diagnostic test viz., Box-Ljung test, is applied on the residuals 
of all the four time series models in R. The output of the 
diagnostic test is as follows: 

TABLE 8: Lung-Box test 
MODEL Statistic (χ2) DF p-value 

ARIMA (1,1,1) 0.0035 1 > 0.05 
NNAR (2,2) 0.0011 1 > 0.05 
MLP (2:5:1) 0.1108 1 > 0.05 

ELM (2:100:1) 10.582 1 < 0.05 
Since the probability corresponding to Box-Ljung Q-

statistic is greater than 0.05, for the three models, ensures that 
the three models ARIMA (1,1,1), NNAR (2,2) and MLP 
(2:5:1) are adequate. The p-value of the ELM (2:100:1) is less 
than 0.05 indicates that the model is not adequate to the data 
set used in this study. Hence it can be concluded that the 
selected autoregressive integrated moving average ARIMA 
(1,1,1), Neural network autoregressive NNAR (2,2) and 
Multi-Layer Perceptron MLP (2:5:1) models are adequate for 
the time series data used in this study. 

V. FORECASTS 

The forecasted values obtained by the four models for the 
test data is shown in the following graph. 

 
Figure 9: Forecasts Obtained by the Four Time Series 

Models for the Test Dataset 
The accuracy measures of the four time series models for 

the forecasted values of test data are as follows: 
Table 9. Accuracy Measures of Forecasted Values by the 

four Time Series Models 
Model RMSE MAE MAPE 

ARIMA (1,1,1) 1.419 1.216 4.233 
NNAR (2,2) 0.920 0.797 2.851 
MLP (2:5:1) 0.900 0.769 2.762 

ELM (2:100:1) 2.505 2.369 9.378 

VI. CONCLUSION 

In this study, the four models viz., ARIMA (1,1,1), NNAR 
(2,2), MLP (2:5:1) and ELM (2:100:1) were tested and 

compared to each other for modelling the Indian equity market 
stock index NIFTY-50. Of the four time series models 
considered, the ARIMA (1,1,1), NNAR(2,2) and MLP(2:5:1) 
are found to be adequate using the Ljung-Box test (Table 8). 
And of these three models, NNAR(2,2) and MLP(2:5:1) 
models performed better than ARIMA (1,1,1) model (Table 9) 
with respect to the forecasting capabilities. The errors in the 
forecasting procedure were much lower in the MLP model 
compared to the other models considered in the study (Table 
9). Upon observing the accuracy measures Root Mean 
Squared Error (RMSE), Mean absolute Error (MAE) and 
Mean Absolute Percentage Error (MAPE) (Table 9) for the 
forecasted values, it can be concluded that the MLP (2:5:1) 
model along with NNAR (2,2) out performs the other time 
series models considered in the study. 
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