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Abstract: Classification of cancer and selection of genes is one 

of the most important application of DNA microarray data. As a 
result of the higher dimensionality of microarray data, 
classification and selection of gene techniques are frequently 
employed to support the professional systems in the diagnosing 
ability of cancer with higher precision in classification. Least 
absolute shrinkage and selection operator (LASSO) is one of the 
most popular method for cancer classification and gene selection 
in high dimensional data. However, Lasso has limitations of being 
biased and cannot select variables more than the sample size (n) in 
gene selection and classification of high dimensional microarray 
data. To address this problems, LASSO-C1F was proposed using 
scale invariant measure of maximal information complexity of 
covariance matrix  denoted  with weight modifications as  
data-adaptive alternative to the fairly arbitrary choice of the 
regularization term  in the least absolute shrinkage and 
selection operator (LASSO). The results indicated the 
effectiveness of the proposed method LASSO-C1F over the 
classical LASSO. The evaluation criteria result shows that the 
proposed method, LASSO-C1F has a better performance in terms 
of AUC and number of genes selected 

Keywords: Lasso, Maximal Complexity, Information Measure, 
Theoretic Measure, Penalized Likelihood Method, 
Scale-Invariant Complexity. 

I. INTRODUCTION 

With recent development of high dimensional microarray 
data in genetic and molecular biology, the resultant datasets 
clearly have a small size of sample with a higher dimension 
where the size of the sample is typically in the range of 
hundreds, whereas the number of genes is in tens of 
thousands[1], [2] .The success of any statistical method in 
high dimensional data rely on the pre-determination of 
dissimilar features[3]. The aim of feature selection and 
dimension reduction is identifying the least possible but most 
significant subset. As a result, various feature selection 
approach have been proposed in the literature[3]–[8] . 
Maximal Covariance Complexity-Based Penalized 
Likelihood Methods (MCBPM) had proven the capability 
among the outstanding system of expert classifiers in the 

 
 
Revised Manuscript Received on June 12, 2020. 
* Correspondence Author 

Isah Aliyu Kargi*, Department of Mathematics, Faculty of Science, 
Universiti Teknologi Malaysia 81310 UTM Skudai, Johor, Malaysia. 2 
Department of Mathematics and statistics Nuhu Bamalli Polytechnic p.m.b 
1061, Zaria Correspondence address:isaaliyukargi@gmail.com 

Norazlina Bint Ismail, Department of Mathematics, Faculty of 
Science, Universiti Teknologi Malaysia 81310 UTM Skudai, Johor, 
Malaysia. 

Ismail Bin Mohamad, Department of Mathematics, Faculty of Science, 
Universiti Teknologi Malaysia 81310 UTM Skudai, Johor, Malaysia. 
 
© The Authors. Published by Blue Eyes Intelligence Engineering and 
Sciences Publication (BEIESP). This is an open access article under the CC 
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/) 
 

classification of high dimensional data [9]–[13]. This study 
aimed to compare Classical LASSO performance in gene 
selection and classification with a proposed method called 
LASSO-C1F method in classification of high dimensional 
data. Studies on classification of high dimensional 
microarray data have proposed different types of classical 
LASSO for variable selection and classification[13], [14].  

Studies such as [15]–[19],proposed a new algorithm built 
on the Gauss–Seidel approach to solve  penalized logistic 
regression (PLR) by usage in selection of gene and 
classification of microarray cancer data. J. Zhu, [16] trailed 
with alternative PLR proposals as a substitute for supporting 
vector machine in the classification  of microarray cancer 
data considering the probability estimation. Furthermore, 
Shen and Tan,[17] come up with a  combination of three 
dimension reduction approach , partial least square ,singular 
value decomposition and PLR to improve the speed of 
computation and classification precision. A combination of 
ridge PLR and partial least squares was equally proposed by 
Fort and Lambert-Lacroix,[20],using prostate, colon and 
leukemia dataset to illustrate the classification performance. 
Kim, Kwon, and Heun Song,[21]  proposed an extension  of 
PLR to classify multi-class microarrays cancer data. A 
combination of Bayesian regularization and PLR in the 
selection of genes for classification of cancer data was 
proposed by Regularization,and Talbot [18]. A new method 
combining the non-convex penalty with PLR in the 
classification of cancer was developed by Liu et al., [22], 
[23].     

 Additionally, Algamal and Lee,[24] presents a 
combination of Adaptive LASSO and PLR model for 
classification of gene in microarray data. Novel PLR method 
built on the advancement of regression coefficient with an 
estimate on distribution algorithm was developed by 
Zaragoza,et al. [25]. The major contribution of their work is 
resolving the penalization term during the selection of genes. 
Chen et al.[26] improves the algorithm of GLMNET for L1 
penalty to resolve some of the glmnet hypothetical execution 
problems. An investigation of the selection  of gene and 
classification of cancer data with a new PLR having  an  

penalty was developed by Bootkrajang and Kabán, [27]. 
Bayesian regularization was used to identify mislabeled 
arrays with PLR [27]. A new algorithm to  resolve penalized 
LASSO with multinomial logistic regression (MLR) to 
classify multi-class gene data was proposed by Vincent and 
Hansen,[28].    

The general property of a statistical model is complexity 
which is mostly sovereign of probabilistic specification, 
specific content or structure of the models. From the 
literature, the theory of complexity has been applied in 
various contexts.  
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According to Legg and Hutter,   [29], [30] there is no 
precise definition of complexity in statistics, since the 
notation is indefinable.  
In multivariate statistical data mining and modelling with a 
higher dimensional data matrix X of size ( ), frequently 
p-variables interrelate in some manner and some variables (or 
sets of variables) can have significant effect to the other 
variables [29]. The interaction of These variables and their 
dependencies are reflected upon one another. Thus for a 
random vector, complexity can be defined as a measure of the 
degree of interdependency among the entire system and a 
simple enumerative structure of its parts or subsystems [11], 
[29], [31], [32].The more the dependency or interaction 
among the system the higher the complexity. This implies 
that a higher degree of complexity lead to a higher 
computation rates in statistical data processing [33]–[36]. 
Information theory is, therefore, suitable to evaluate the 
dependency or non-independency and as well measure the 
complexity of set of variables. 

In higher dimensional DNA microarray data, least 
absolute shrinkage and selection operator (LASSO) is one of 
the most popular method for cancer classification and gene 
selection. However, despite its capability in performing 
variable selection and classification, it is limited by not 
selecting variables more than the sample size (n) and cannot 
select group of correlated variables. To improve the selection 
and classification ability of LASSO, the study proposed to 
apply scale invariant measure of maximal information 
complexity of covariance matrix  denoted  with 
weight modification as a data-adaptive and an alternative to 
the fairly arbitrary choice of the regularization term  in the 
least absolute shrinkage and selection operator [37].  

The rest of this paper is organized as follows: the 
methodology applied in this study is detailed in section 2. In 
section 3, explanation of the data set and data analysis was 
displayed. Finally, section 4 covers the conclusion. 

II. MATERIALS AND METHODS 

2.1 Information Measure of Dependence in 
High-Dimensions 

 Bozdogan,[32] define the joint density function of  p- 
dimensional distribution  with a 

marginal density fuctions  for  

information measure of dependency among the random 
variable  as:  

 
      

where I represent Kullback-Leibler (KL), information 
divergence against independence, and is a measure of the 
likely dependence between the component variables[38], 
[39].The joint distribution  of the random 

variables to the product of their marginal distribution  
 is the major contrast base on the 

hypothesis that they are distributed independently to the level 
that the joint distribution significantly varies  from the 
distribution of the random variable base on  the theory of 

dependency. Hence, this is known as measure of 
multicollinearity or interdependence between variables. 
The properties of the Information are: 

a.  that is, the predictable information measure 
is nonnegative. 

b. if and only if 
~ for each p-tupple 

 

that is if and only if the random variables ~ are 

equal to unity, and its algorithm is then zero. But if is not 
equal to zero, it indicates dependency. 
 From the study of Bozdogan, [32], the joint entropy of KL 
divergence is define by the following identities 

. 
where 

 
is the marginal entropy, and 

 

 
From eqn. (1), the relation can be generalized as a solution to 
the interaction amongst any subset of variables. 

2.2 Covariance Complexity of Information Theoretic 
Measure   

 Bozdogan, [32] and Kartal and Hamparsum, [40] define the 
information-theoretic measure of complexity of a 
multivariate distribution,  be a 

multivariate Gaussian ,the density function is defined by: 

 

 
where 

 

and  (positive definite).  
and it can be written: 

 
 
Formally, joint entropy  from eqn(3) 

for this scenario in which ~ is given by: 
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Then, since , we have 

 

 

Similarly, the marginal entropy  is 

 

  (10) 

Where  is the variability of the jth variable.  

2.3 Covariance Complexity 

Bozdogan,[32] and Bozdogan and Howe,[41], defined 
complexity of a covariance matrix  for multivariate normal 
distribution as: 

 

 
This reduces to 

 

 
 

Where  is the discrepancy or variability of the jth  

variable, and also the jth diagonal element of   Hence, under 
orthonormal  transformation, the first term of eqn. (12) is not 
invariant. This indicated the outcome in eqn. (12) is 
ineffective to measure the quantity of complexity in the 

covariance matrix  since: 

i.  depends on the coordinates of the original 

random variables  

 

ii. From  eqn (10) ,   would change under 
orthonormal transformation 

2.4 Maximal Covariance Complexity 

Generally, the maximal covariance complexity of  a matrix  
can be expressed as the sovereign of the coordinates of the 

novel chance variables  associated with the 

variances  Since  in eqn.(10) is 

coordinate dependence. Thus , to improve upon  in 
eqn.(10) Bozdogan,[32] present the maximum of complexity 

in  under orthogonal transformations. Therefore, the 
maximal information theoretic measure of complexity of a 

covariance matrix  of a multivariate Gaussian distribution 
is given by : 

 

 

Based on  measure, various studies have  employed 

using the maximal complexity information measure  
as a penalty functional [29], [32], [42] . 

If we let  represent the eigenvalues of the 

covariance matrix , then 

 
is considered as the arithmetic mean of the eigenvalues, also 

 
be the geometric mean of the eigenvalues of . Therefore, the 
complexity of  can be written as 

 
The  log ratio among the  geometric mean and the arithmetic 
mean of the eigenvalues of  is called complexity [32] .  It 
evaluates the difference between the eigenvalues of  and 
also  consider determinant and trace as  the two scalar  
measures of multivariate scatter into one single function. 
Similarly, Frobenius norm is another form of complexity 
techniques[43], [44] and is given by : 

 
And the square of the frobenius  norm of  is invariant under 
the orthogonal transformation and can be presented as:  

However, in terms of singular values (or 
eigenvalues),  becomes: 
                                              

 

So,  P represent the rank of  ,  is the jth  eigenvalues of 

 and  is the  eigenvalues of the 
arithmetic mean . 

2.5 Scale-Invariant Complexity 

The connection between Frobenius complexity  and 
maximal information complexity   is the fact that they 
are all second order equivalent [32], [45]. Hence, H. 
Bozdogan,[32] approximated  as  the eigenvalues 

 by : 

 
 
Thus, we can relate  to the norm of Frobenius 
classification of  complexity   
 of   by presenting   which  finally can be define as:  
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   in terms of the eigenvalues, becomes 

 

 
 
Thus,  is  as the second order corresponding  
complexity measure to the novel  measure. Also,  

 is term as the  scale-invariant and  with 

 only when all  Furthermore,  

evaluate  the relative variability  in the eigenvalues before an 
absolute variability  of the eigenvalues. 

2.6 Application of   in LASSO Shrinkage 

The regression coefficient of the penalized linear regression 
using LASSO is given by: 
                                              

 

 
the tuning parameter t also called regularization or penalty 
parameter is usually computer-generated as grid of values. 
This implies that randomly generated t values will vary each 
time the LASSO procedure is repeated for the same data. As a 
result, the current study intuitively considered generating t 
values data-adaptively could make t arbitrary, data-specific 
and finally, corrects interdependency (or correlation) effects 
on LASSO procedure. Hence, in langrange form eqn. (22) 
can be written as: 
         

 

 
 
The relation between eqn. (23) and eqn. (24) holds due to the 
duality and the KKT (Karush-Kuhn Tucker) conditions. 

Additionally, for every  there exists a  such that 
both equations lead to the similar result [44], [46]. 

 However, we notice that  is a scaler whose value 

can be large depending on the structural complexity of   and 
can therefor make LASSO shrink all coefficients to zero. The 
current study will address his challenge by constructing 

 for each dimension of  instead of the overall 

complexity of the entire . Because is difficult to attach non 
statistical significance to differences in maximal covariance 
complexity scores when attempting to select the most 
appropriate model. Therefore, we computed the relative 
weights that can be interpreted as the probability that a given 

model due to a corresponding  value is the most 
appropriate. These weights are mathematically computed as:  

 
where i indexes the K models evaluated, and  denotes 
the maximal covariance complexity due inclusion of variable 
i to the K models. 

III. DISCUSSION OF RESULTS  

To Verify the efficiency of the suggested method, the 
classical LASSO algorithm in the glmnet package of the R 
software for statistical computing and graphics was modified. 
The classical LASSO algorithm and the modified algorithm 
were tested using a training set with 80% of the original size 
and a testing set with 20% over 50 Monte-Carlo 
cross-validation (MCCV) iterations with two microarray data 
sets. These data sets include the Leukemia data set of Golub 
et al.,  [47]  comprising expression levels of 7129 genes for 
47 acute lymphoblastic leukemia (ALL) patients and 25 acute 
myeloid leukemia (AML) patients and the Prostate data set of 
Singh et al,  [48] comprising 12600 genes for 50 normal and 
52 tumor patients, respectively.  

Standard statistical classifier performance metrics 
including misclassification error rates (MER), correct 
classification rates (CCR), sensitivity (SEN), specificity 
(SPEC), positive predictive values (PPV), negative 
predictive values (NPV), balance accuracy (BA), G-means 
and area under the ROC curve (AUC), respectively, were 
estimated on the 20% test data set over 50 Monte-Carlo 
cross-validation (MCCV) iterations. The results are 
presented in tables one to tables ten (table 1-table 10) for the 
two data sets. 

3.1 Leukemia Cancer Data Set results 

3.1.1 Test performances: 

Based on AUC error loss in Table 1, the proposed 
LASSO-C1F penalized logistic classifier consistently 
outperformed the classical LASSO penalized logistic 
classifier in terms of average CCR, SENs, SPECs, BAs, 
PPVs, NPVs, GM, AUC, respectively, over 50 Monte-Carlo 
cross-validation (50 MCCV) iterations. It is showed from 
these results that more than 29 genes selected by the classical 
LASSO may be important core relevant (biomarker) genes 
for discrimination of patients in terms of their leukemia 
cancer statuses. This inference is because with 35 non-zero 
genes, the proposed LASSO-C1F achieved better test 
prediction results. We can also observe that on deviance loss 
in Table 2, similar result was obtained which shows the 
efficiency of LASSO-C1F over the classical LASSO. 
However, in Table 3, both the classical LASSO and proposed 
compete favorably well in terms of all average performance 
metrics to two places of decimal values. Though, the 
proposed LASSO selected additional 4 genes to achieve these 
classification performances. The proposed LASSO-C1F 
selects higher number of genes than the classical LASSO 
because it has the property that it selects not just one out of 
the group of correlated genes since its choice of shrinkage 
term is data-adaptive with consideration of covariance 
information complexity and interdependence among such 
genes.  
Similarly, the results in Table 4, indicated that LASSO-C1F 
also favorably competes with classical LASSO in terms of 
true positive prediction rates (SENs), true negative prediction 
rates (SPECs), PPVs, and NPVs. 
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 However, LASSO-C1F outperformed the classical LASSO 
in terms of CCRs, AUC and it identifies additional 6 core 
relevant genes for prediction of patient’s leukemia status 

which possibly were not identifiable by the classical LASSO. 
On the other hand, results for misclassification error 
measures in Table 5, LASSO-C1F penalized logistic 
regression classifier outperform classical LASSO logistic 
classifier on classification performances. It also identified 
additional 6 genes as core biomarkers for leukemia prediction 
in patients as it has consistently done under MAE, MSE, 
AUC and deviance error measures. 

3.2 Prostate Cancer Data Set of Singh et al., 2002 

3.2.1 Test performances: 

Prostate cancer contains12,600 genes for 52 prostate sample 
tumor and non-tumor tissues of 50.A subgroup of 5966 genes 
was modified in the classification[49] . The performance 
accuracy in the training set for the proposed LASSO-C1F 
method favorably competes with the classical LASSO in 
Table 6 but LASSO-C1F selects more relevant genes as it 
does for the leukemia cancer data. Also the results on the 
deviance error loss in Table 7, the evaluation criteria result 
shows that the proposed method, LASSO-C1F has a better 
performance in terms of CCRs, SENs, AUC (0.9486), 
(0.8904) and (95.31%) respectively. But similar 
performances are achieved by both methods in term of 
specificity. Furthermore, in terms of MAE loss in Table 8, 
both classical LASSO and LASSO-C1F compete favorably 
in terms of all classification performance metrics. Similarly, 
result from table 9 indicated that among the two methods 

there is no anyone that outperform the other in all measure of 
accuracies. 
Additionally, results from table 10 display the performance 
of the proposed method, LASSO-C1F and the classical 
LASSO, it can be seen from the result that the newly 
proposed method is superior than the classical LASSO in 
terms of CCRs, SENs, and AUC. But a similar result for the 
two methods in terms of SPECs for 50 MCCV Iterations with 
MER Loss for Shrinkage Parameter  over 10-Fold CV 
respectively. 

Although it is known in standard statistical learning 
and data mining literature that training performances will 
always underestimate test performances, training results are 
presented in figure 3.1 for both LASSO and LASSO-C1F 
logistic classifiers for leukemia cancer data set. The results 
prove the efficiency of LASSO-C1F over the classical 
LASSO both in classification precision and in selecting 
higher number of genes this might be as a result of the weight 
modifications as data-adaptive alternative to the fairly 
arbitrary choice of the regularization term which encourages 
grouping effect. 

Similarly, Figure 3.2 demonstrate the training 
performance of the two techniques for prostate cancer 
datasets.  Like leukemia data, figure 3.2 display the result of 
the proposed method, LASSO-C1F and the Classical LASSO 
and show a similar outcome in terms of CCRs, SENs, SPECs 
and AUC. However, LASSO-C1F selected higher number 
genes respectively this might be due to weight modifications 
as data-adaptive alternative to the fairly arbitrary choice of 
the regularization term.  

 
Table 1: 50 MCCV Iterations with AUC Error Loss for Shrinkage Parameter  over 10-Fold CV

Method CCRs SENs SPECs BAs PPVs NPVs GM AUC # Genes 

LASSO 0.9343 0.8574 0.9779 0.9176 0.9519 0.9264 0.9104 93.9168 29 

LASSO-C1F 0.9486 0.8904 0.9795 0.9349 0.9619 0.9443 0.9307 95.31201 35 

AUC: Area under the Curve 
 

Table 2: 50 MCCV Iterations with Deviance Loss for Shrinkage Parameter  over 10-Fold CV 

Method CCRs SENs SPECs BAs PPVs NPVs GM AUC # Genes 

LASSO 0.9123 0.8024 0.9345 0.9026 0.9210 0.9250 0.9024 90.2145 29 

LASSO-C1F 0.9524 0.8543 0.9536 0.9325 0.9450 0.9325 0.9416 93.4132 35 

 

Table 3: 50 MCCV Iterations with MAE Loss for Shrinkage Parameter  over 10-Fold CV 

Method CCRs SENs SPECs BAs PPVs NPVs GM AUC # Genes 
 

LASSO 0.9429 0.8769 0.9795 0.9282 0.9619 0.9371 0.9229 94.9532 29  

LASSO-C1F 0.9486 0.8896 0.9795 0.9345 0.9619 0.9447 0.9302 95.3303 33 
 

MAE: Mean Absolute Error 
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Table 4: 50 MCCV Iterations with MSE Loss for Shrinkage Parameter  over 10-Fold CV 
Method CCRs SENs SPECs BAs PPVs NPVs GM AUC # Genes 

LASSO 0.9429 0.8769 0.9795 0.92818 0.9619 0.9371 0.9229 94.95317 29 

LASSO-C1F 0.9500 0.8929 0.9795 0.9362 0.9619 0.9465 0.9321 95.41916 35 

MSE: Mean Squared Error 

Table 5: 50 MCCV Iterations with MER Loss for Shrinkage Parameter  over 10-Fold CV 
Method CCRs SENs SPECs BAs PPVs NPVs GM AUC # Genes 

LASSO 0.9271 0.8344 0.9761 0.9052 0.9418 0.9196 0.8957 93.0734 29 

LASSO-C1F 0.9471 0.8871 0.9795 0.9333 0.9619 0.9425 0.9288 95.2231 35 

MER: Misclassification Error Rate 

Table 6: 50 MCCV Iterations with AUC Error Loss for Shrinkage Parameter  over 10-Fold CV 
Method CCRs SENs SPECs BAs PPVs NPVs GM AUC # Genes 

LASSO 0.9343 0.8574 0.9779 0.9176 0.9519 0.9264 0.9104 93.9168 29 

LASSO-C1F 0.9486 0.8904 0.9795 0.9349 0.9619 0.9443 0.9307 95.31201 35 

AUC: Area under the Curve 

Table 7: 50 MCCV Iterations with Deviance Loss for Shrinkage Parameter  over 10-Fold CV 
Method CCRs SENs SPECs BAs PPVs NPVs GM AUC # Genes 

LASSO 0.9343 0.8574 0.9779 0.9176 0.9519 0.9264 0.9104 93.9168 29 

LASSO-C1F 0.9486 0.8904 0.9795 0.9349 0.9619 0.9443 0.9307 95.3120 35 

 

Table 8: 50 MCCV Iterations with MAE Loss for Shrinkage Parameter  over 10-Fold CV 
Method CCRs SENs SPECs BAs PPVs NPVs GM AUC # Genes 

LASSO 0.9429 0.8769 0.9795 0.9282 0.9619 0.9371 0.9229 94.9532 29 

LASSO-C1F 0.9486 0.8896 0.9795 0.9345 0.9619 0.9447 0.9302 95.3303 33 

MAE: Mean Absolute Error 

Table 9: 50 MCCV Iterations with MSE Loss for Shrinkage Parameter  over 10-Fold CV 
Method CCRs SENs SPECs BAs PPVs NPVs GM AUC # Genes 

LASSO 0.9429 0.8769 0.9795 0.92818 0.9619 0.9371 0.9229 94.95317 29 

LASSO-C1F 0.9500 0.8929 0.9795 0.9362 0.9619 0.9465 0.9321 95.41916 35 

MSE: Mean Squared Error 

Table 10: 50 MCCV Iterations with MER Loss for Shrinkage Parameter  over 10-Fold CV 
Method CCRs SENs SPECs BAs PPVs NPVs GM AUC # Genes 

LASSO 0.9271 0.8344 0.9761 0.9052 0.9418 0.9196 0.8957 93.0734 29 

LASSO-C1F 0.9471 0.8871 0.9795 0.9333 0.9619 0.9425 0.9288 95.2231 35 

MER: Misclassification Error Rate. 
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Figure 3.1. Results of training performance for leukemia data set. 

   
Figure 3.2: Results of training performance for Prostate data set. 
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IV. CONCLUSION 

Overall, analysis of high dimensional DNA microarray data 
set establishes a very significant area of study in 
classification of cancer and gene selection. In the present 
paper we proposed LASSO-C1F that proved to more efficient 
in classifying high dimensional microarray data. Based on the 
revelation of this study, it can be inferred that: 

i. The efficiency of LASSO-C1F over the classical 
LASSO both in classification precision and reliability 
in genes selection is higher. 

ii. The performance accuracy in the training set for the 
proposed LASSO-C1F method favorably competes 
with the classical LASSO but LASSO-C1F selects 
more relevant genes as it does for the leukemia cancer 
data; 

iii. the evaluation criteria result shows that the proposed 
method, LASSO-C1F has a better performance in 
terms of CCRs, SENs, AUC (0.9486), (0.8904) and 
(95.31%) respectively; 

iv. In terms of MAE loss, both classical LASSO and 
LASSO-C1F compete favorably for all classification 
performance metrics; 

Therefore, the newly proposed method can apply efficiently 
to analysed high dimensional microarray data for cancer 
classification and genes selection. LASSO-C1F can 
consistently perform selection of gene and address the 
consequence of grouping concurrently. Finally, the proposed 
method has shown the ability of choosing more correlated 
genes. 
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