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Abstract: Main purpose of this paper is to formulate an 

epidemiological model for dengue fever transmission 

using fractional order derivatives. Due to memory 

effect property, fractional order derivative has a benefit 

over the classical integer order models. This model for 

transmission of dengue fever of the non-integer order 

initial value problem will be based on the well-known 

fractional order Caputo derivative. Here our focus is on 

the existence of non-negative solutions of the frictional 

order dengue fever transmission model, furthermore, 

equilibria of the model and local asymptotic stability of 

model equilibria is investigated. In the end fractional 

order transmission model for dengue fever without 

immunity is presented. 

   Keywords: Dengue fever, Caputo derivative, Existence 

of positive solution, Model equilibria, Asymptotic 

stability. 

I. INTRODUCTION 

     Mathematical models have been formulated, 

investigated and studied by many authors in engineering, 

finance, economics, science and in particular mathematical-

biology(Infectious disease) using the classical integer order 

system of differential equations has received a lot of 

concentration in the past several years [1-14]. On the other 

hand due to the effective nature of fractional derivatives and 

integrals, many epidemiological models and other models in 

engineering and science have successful being originated 

and analyzed [15-26]. Fractional order derivatives has a 

significant characteristics called memory effect and this 

extraordinary property do not exist in the classical 

derivatives. These derivatives are nonlocal opposed to the 

local behavior of integer derivatives. It implies the next state 

of a fractional system depends not only upon its current state 

but also upon all of its historical states. Petras and Magin 

discussed in [27], ”it is clear that the state of several 

systems(electrochemical, biological, etc.) at a given time 

depends on their configuration at previous times”.  The most 

important purpose of this paper is to originate and present a 

dengue fever transmission model with and without 

immunity using fractional order derivatives which has an 

advantage over the classical integer order models. Stability 

analysis of the model will also be a part of this paper. 

II. MODEL FORMULATION 

This part of paper deals with formulation of dengue disease 

transmission model of a non-integer order IVP (Initial Value 

Problem) using fractional order derivatives.  
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Fractional calculus is an attractive and dominant tool for 

mathematical modeling. It has been applied in many areas of 

research such as economics, science and engineering. There 

are many interesting and attractive definitions of fractional 

derivatives in fractional calculus [26, 28], but here the 

famous Caputo derivatives is used due its advantage on 

initial value problems. Some important deifications related 

to frictional calculus are given below: 

Definition 2.1. [26, 28], Frictional integral of order α is 

defined by 
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for 0< t, 0 < α < 1. 

 

Definition 2.2. [26, 28], Caputo Fractional derivative is 

defined by 
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for p – 1  <α < p. 

    A Host-Vector dengue disease transmission 

model was developed by Esteva and Vargas in [29], 

and suppose that a recover individual from the 

disease will not be reinfected by the disease. They 

also assume that the host population H is constant 

with death and birth rate µh. Where Sh, Ih, Rh are 

susceptible, infective, and recover individuals in 

the host population and Sv, Iv are susceptible, 

Infective in the vector population V. Their model is 

given as follows: 
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where βh, βv are the transmission probability from 

vector to host and host to vector. h  represent the 

recovery rate in the host population and b is the 
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biting rate of the vector. Furthermore equation 

(1) can be reduced to three dimension dynamics 

with the condition Sh + Ih + Rh = H and  

Sυ+Iυ= .



 

h h
h h h h

dS b
H S I S

dt H



     

( )h h
h h h h

dI b
S I I

dt H



                    (2) 

,h

dI b
S I I

dt H

 
  


         

To normalize (2), we set S = , ,
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Replacing the integer derivatives in system (3) by 

Caputo derivatives of order α we obtain: 
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If we follow the method used by Diethelm [32], 

system (4) becomes 
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Now, it is understandable that the dimension on 

both sides of the system(5) correspond to 

(times)α. It is noticeable that when the fractional 

order α approaches to 1, then the model problem 

(5), becomes the classical endemic model (3). 

III. NON-NEGATIVE SOLUTION 

Let us assume R3 = {Z ∈ R3 : Z ≥ 0}, where Z = 
(s, i, v)T . To show the non-negative solution of the 
model we will apply the following lemma presented in 
[30]. 

Lemma: 3.1. [30], Generalized Mean Value Theorem: Let 

g(x) ∈ C[c, d] and Dαg(x) ∈ C[c, d] for 0 ≤ α ≤ 1, 

then we have 
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with the condition c ≤ ξ ≤ x, for all x ∈ [c, d].  

Remark 3.1: Assume that g(x) ∈ C[c, d] and 
( )D g x ∈ C[c, d], for 0 ≤ α ≤ 1. It follows form 

lemma 3.1 that g(x) is non-decreasing if ( )D g x

≥ 0, for all x ∈ [c, d] and g(x) non increasing if 
( )D g x ≤ 0 for all x ∈ [c, d]. 

Theorem 3.1 A unique solution of the fractional order 

initial value problem (5) exists and it remains in 
3

† .R  on 

each hyperplane bounding the non negative orthant, the 

vector field points into R3 .  

Proof 3.1 Existence and uniqueness of the solution of 

model problem (5) in (0, ∞) follows by the use of theorem 

3.1 and remark 3.2 in [31]. The domain R
3
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invariant for the model problem, because 
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on each hyper plane bounding the non negative outhunt, the 

vector field points into R
3
+. 

IV. EQUILIBRIA OF THE MODEL 

The frictional order model (5) has two biological 

meaningful equilibrium points i.e. disease free and endemic 

equilibrium. These two equilibria depending on i  and υ: if 

there is no disease for host and mosquitoes i.e. if i  = υ = 0, 

then the equilibrium point is said to be disease free 

equilibrium, and if i ≠0,  ≠0, then the equilibrium point is 

called endemic. To determine the equilibria of the frictional 

order model (5). Assume that 
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then the disease free equilibrium Ef (1, 0, 0) and 

endemic equilibrium Ee(s∗, i∗, v∗), where 
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The second fixed point exists only if the threshold 

parameter 
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the basic reproductive number is denoted by R0 and 

is equal to .R  

Theorem 4.1 The disease free equilibrium Ef is 

globally stable if R < 1. If R > 1, then the endemic 

fixed point Ee is globally asymptotically stable and Ef is 

unstable. 

It is proved in [29] that disease free equilibrium 

point is globally stable if R < 1.For R > 1 the fixed 

point Ee becomes locally asymptotically stable and 

the fixed point Ef becomes unstable. The global 

stability is shown using the property of stability of 

periodic orbits. 

V. MODEL WITHOUT IMMUNITY 

 There is no enough information about the immunity 

after recovery for Dengue Fever, that’s why we 

suppose that the immune individuals in the host 

population is negligible. In this case the Host-

Vector Model (1) for Dengue Transmission becomes 

as: 
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Replacing the integer derivatives in system (7) by Caputo 

derivatives of order a  then the system can be written as: 
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Using the same technique used by Diethelm [32], system (8) 

becomes 
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In this case we have two fixed point (0,0) and 

( , ),i  
 Where i  

( )

   

  

   

  





     and   

(

   

  

   


  

 



 

It is simple and easy to and the basic reproduction 

number for system (9). The origin is locally stable if 

the basic reproduction number is less than one and 

unstable if the basic reproduction number greater 

than one. 

VI. CONCLUSION 

  In this research we formulated a frictional order 

Host-vector model for dengue fever. In our work 

we established the existence and uniqueness of 

non-negative solutions of the frictional order 

model. We have shown that there are two biological 

meaningful equilibria of the system and proved 

that the disease free equilibrium Ef is globally 

stable if the basic reproduction number less than 

one. If the basic reproduction number greater than 

one, then the endemic fixed point Ee is globally 

asymptotically stable and Ef is unstable. In last 

section the model is analyzed and formulated 

without immunity. 
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